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Abstract  —  A novel method for computerized diagnosis
and automatic tuning of microwave (cavity) filters is
introduced. The method is based on equivalent network
theory using  modified filter synthesis equations, including all
characteristic filter parameters like resonant frequency,
losses of individual resonators, input-/output couplings and
couplings between resonators. Instead of using field
simulators to extract filter parameters and associated
network sensitivities, a more practical and more accurate
parameter extraction process of measured S-parameter data
is utilized. Thus automatic tuning becomes a two step process.
In the first step the exact parameter values of an untuned
filter as well as parameter sensitivities are extracted from a
series of S-parameter measurements. In a second step
gradient optimization is used on the so corrected model to
find the tuning screw positions to give the same parameter set
as obtained from the synthesis.

I. INTRODUCTION

The explosive growth of the telecommunication
market has significantly increased the need for low cost
and high Q microwave components. Large volume
production and quick turn-around time have become
important aspects in the decision as to what kind of filter
structures are most suitable to satisfy a range of
specifications. In this context modular filter design
techniques show certain advantages since they allow to
pre-design a range of filter modules which can be
assembled quickly according to the customer´s need in
terms of bandwidth, insertion loss and slope selectivity. A
drawback of this approach is, however, that the assembled
filters must be fine tuned on the production floor which,
depending on the sensitivity of the filter characteristics,
can be a time consuming and thus expensive task.

To eliminate these extra cost, a novel computer-
controlled automatic fine tuning technique for microwave
filters is introduced. Although currently this technique is
only functional for direct coupled filters, it is expected that
the approach presented in this paper can also be applied to
cross-coupled filters.

The core of this new method is an efficient parameter
extraction technique which generates the element values of

a theoretical filter model from measured complex S-
parameter data. A great advantage of this approach is that
the filter model (element values) need not be very accurate
as long as the effect of the tuning screws is represented
with sufficient accuracy. After the first measurement all
characteristic parameters of the real filter (including
element values at given screw position) are found from
parameter extraction (filter diagnosis). Subsequent
measurements (one per tuning screw) provide a reliable
prediction in which direction the tuning screws (with
corresponding penetration depths) must be turned for
increasing or decreasing values of the network elements.
This prediction is valid within the tuning range of the
filter. In a second step the corrected filter model is then
optimized towards the required filter response (i.e. screw
position determined) which is known from filter synthesis.

In the past, various tuning techniques have been
proposed, but only few are suitable for automatic tuning of
microwave filters. In Ref. [1] filter tuning in the time
domain is described. This method has two disadvantages.
First, an optimum filter template is needed and second an
experienced operator is still required to tune the filter. In
Ref. [2] the authors propose a diagnosis and tuning method
based on model-based parameter estimation and multi-
level optimization. Although their general circuit model is
similar to our model, a major disadvantage of the approach
in [2] is that they approximate the measured  S-parameters
by a ratio of polynomials with real coefficients. However,
S-parameters of filters can only be modeled accurately by
polynomials with complex coefficients. Consequently, in
the multi-level optimization only the locations of the
reflection and transmission zeros are optimized. This
approach does not include the optimization of the filter
ripple or return loss, respectively. Moreover, diagnosis and
tuning of a real (measured) filter has not been investigated
in that paper.

In Ref. [3] an optimization method for the identification
of filter network parameters and network sensitivities is
proposed. But in this paper only the simulated amplitude
and delay response of coupled cavity filters is given.
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In the automatic tuning system described in [4] only the
magnitudes of S11, S21 and S22 are used. As a consequence
the approximate circuit models are valid only in a very
confined frequency region which is not the case in our
present system.

II. DESCRIPTION OF THE TEST SETUP

A coaxial filter prototype consisting of 3 cavities with
square diameter and is used to prove the concept (Fig.
1). The filter is coupled capacitively by probes at the input
and output. The structure is symmetric. Five tuning screws
allow to change the filter characteristics. Screws 1, 3 and 5
change the resonant frequency of each resonator. Screws 2
and 4 change the coupling between two adjacent
resonators, affecting the bandwidth of the response.

Tuning screws:  1 2  3 4 5

Fig. 1. 3-pole re-entrant resonator filter

The tuning screws are turned by DC-motors which are
controlled by a LabView interface.

III. COMPUTER DIAGNOSIS OF FILTER UNDER TEST

A. Theoretical filter model

The method is based on modified filter synthesis
equations (including resonator losses and frequency shifts)
that include all characteristic filter parameters. A
parameter extraction process performed on the measured
S-parameters of an initial filter design allows accurate
calculation of the individual filter parameters. The method
can be easily extended to cross-coupled filters and filters
of higher order. The model for the 3-resonator re-entrant
cavity filter of Fig. 1 is shown in Fig. 2. The resonators are
assumed to be lossy (represented by normalized
resistances r1, r2, r3) and are coupled to one another by
frequency independent coupling coefficients Mij. ω is the
operating frequency and ω1, ω2, ω3 represent  the
frequency shift of the resonators. This model can easily be
extended to represent cross-coupled filter  structures.

1st resonator 2nd resonator 3rd resonator

Input Output

e
inR

outR
1ω 2ω 3ω

12M 23M

2r1r 3r

Fig. 2. Circuit model for a 3-resonator filter

A simple analysis shows that the vector current is
governed by the following equation [5]:

[A]{I}=-j{e}

The excitation vector is given by {e}t={1,0,0} and matrix
A by:
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It follows for the vector currents {I}=-j[A-1]{e}.
The scattering parameters for the input and output of the
filter model are given by:

1
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S12 and S22 can be found in the same way. All S-parameters
are ratios of polynomials with complex coefficients. The
task is now to find the unknown real filter parameters.
This can be done by using gradient optimization to
minimize the following cost function:
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B. Calibration of the theoretical filter model

The theoretical model does not include the effects of
the input and output probes (Fig. 1). It is also not possible
to calibrate the VNA on the probes. The VNA can only be
calibrated with defined standards and the reference planes
are always at the end of the coaxial cables used in the
measurements. For accurate modeling of a measured filter
it is important to take the effects of the probes into
account. The reactance of the probes shift the resonant
frequencies of the first and last resonator (this effect is
LQFOXGHG�LQ� 1�DQG� 2). The main effect due to the probe
lengths is a phase shift of the S-parameters. This effect can
be compensated by multiplying the measured S-parameters
by appropriate phase terms (calibration of the theoretical
model).
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IV. AUTOMATED FILTER TUNING

A. Synthesis of the filter prototype (target)

The goal of the automatic tuning is to tune a filter from
a roughly pre-tuned position to a target. The target
function is specified in terms of center frequency,
bandwidth and passband ripple.

The parameters of the ideal model (prototype) can be
found from well known filter synthesis. For a 3-pole
Chebychev filter the ideal transfer function is given by:

( )
2

221 2 3
1
1 4 3

idealS
e ω ω

=
+ ⋅ −

e is defined by the ripple (in dB) as: 0.110 1ripplee ⋅= −
To translate this performance into corresponding

element values of the prototype we utilize a gradient
optimization with the following cost function:

2 2
model 2

. 1 1

( ( ) ( ))
ij ij

ideal

freq i j

F abs S abs S
= =

= −∑ ∑∑

For a 0.3 dB ripple the ideal model parameters are
obtained as:

Rin Rout M12 M23 ω1 ω2 ω3

Target 0.729 0.729 0.800 0.800 0 0 0
Table 1. Parameter values of the ideal model (target)

These values are then used as target values in the
automatic tuning. The resonator losses and phase shifts
due to in-/output couplings in the ideal case are of course
zero.
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Fig. 3. Ideal and modeled S-parameters

Fig. 3 shows the response of the circuit model
(prototype) and the ideal transfer function. Perfect
agreement can be observed. The gradient optimization
process (routine ´constr´, MatlabTM optimization toolbox)
converged after 290 iterations. If the routine is supplied
with the analytically calculated gradient of the cost
function
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in out
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the process converges after only 64 iterations (start values
for the parameters set to zero). With all start values set to
one it converges after only 31 iterations.

B. Extraction of model parameter values from measured
filter response

The model described in section III.A is now fitted to
measured S-parameter data. As target we choose the above
Chebychev bandpass characteristic with ripple 0.3 dB (see
Fig. 3), center frequency f0=1.5GHz and ripple bandwidth
BW=50MHz.

To compare the measured and modeled S-parameters,
the latter are normalized using standard bandpass to
lowpass frequency transformation.

The filter is now roughly pre-tuned by hand (basis
position) and the model fitted to this start position. The
agreement between measured and modeled filter is very
good and shown in Fig.4.

Fig. 4. Measured and modeled S-parameters (basis
position) S21 and S11 (dB) versus normalized
frequency

The extracted parameters of the theoretical model for the
untuned filter are given in Table 2.

Rin Rout M12 M23 ω1 ω2 ω3

Basis 0.918 0.915 0.950 0.915 1.45 1.55 1.20
Table 2. Extracted parameters for the basis position

The next step is to utilize the five tuning screws to change
the start parameters (Table 2) to the ideal (target) values
(Table 1).

For this purpose five additional measurements are
necessary, each with one tuning screw turned a defined
angle i at a time. For each measurement the model
parameters are extracted and thus the effect of the tuning
screws determined. Assuming that the model parameters

change linearly with screw turns (see Fig.5)  (iφ : turns in

degree), the model parameters can be found for example
as:

5
1 1

1 1
1

i basis
basis

i
i i

ϕω ωω ω φ
ϕ=

−= + ∑
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Fig. 5. Extracted parameter values for
screws 1, 3, 5

The optimum screw positions can then be calculated by
minimizing the following cost function:
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After turning the screws to the optimized screw positions a
final test measurement is made. The result is shown in Fig.
6. The automatically tuned filter fits almost perfectly the
target function (Fig. 3). The extracted parameter values are
given in Table 3 and agree almost perfectly with the those
of  Table 1. This is also confirmed in Fig. 6 illustrating the
Smith chart response.

Fig. 6
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Fig. 6. Result of the automatic tuning

Rin Rout M12 M23 ω1 ω2 ω3

Target 0.707 0.701 0.804 0.803 0.04 0.04 0.06
Table 3. Parameter values of the automatically tuned filter

V. CONCLUSION

A novel automatic test and tuning system is introduced.
The method is based on a theoretical filter model derived
from modified synthesis equations (ratio of polynomials
with complex coefficients). The elemental values of the
model are found from a parameter extraction process
(using gradient optimization) of measured S-parameters.
Network sensitivities can be extracted from these
measurements as well and are used to find the optimum
parameter values from a second gradient optimization run.
These element values are then directly translated into
screw position. Measured and modeled filter functions are
in excellent agreement.
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